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Bio-Inspired Origami
Metamaterials With Metastable
Phases Through Mechanical
Phase Transitions
Structural instability, once a catastrophic phenomenon to be avoided in engineering appli-
cations, is being harnessed to improve functionality of structures and materials, and has
been a catalyst of substantial research in the field. One important application is to create
functional metamaterials that deform their internal structure to adjust performance, resem-
bling phase transformations in natural materials. In this paper, we propose a novel origami
pattern, named the Shrimp pattern, with application to multi-phase architected metamater-
ials whose phase transition is achieved mechanically by snap-through. The Shrimp pattern
consists of units that can be easily tessellated in two dimensions, either periodically with
homogeneous local geometry or non-periodically with heterogeneous local geometries.
We can use a few design parameters to program the unit cell to become either monostable
or tune the energy barrier between the bistable states. By tessellating these unit cells into an
architected metamaterial, we can create complex yet navigable energy landscapes, leading
to multiple metastable phases of the material. As each phase has different geometries, the
metamaterial can switch between different mechanical properties and shapes. The geomet-
ric origin of the multi-stable behavior implies that, conceptually, our designs are scale-inde-
pendent, making them candidates for a variety of innovative applications, including
reprogramable materials, reconfigurable acoustic waveguides, and microelectronic
mechanical systems and energy storage systems. [DOI: 10.1115/1.4050556]

Keywords: elasticity, mechanical properties of materials, structures, origami,
metamaterials

1 Introduction
Elastic structures with two or more possible equilibria can tran-

sition from one state to another via a rapid process known as snap-
through. Snap-through allows plants and animals to store elastic
energy and release it suddenly to generate rapid and powerful
motions. Through a suite of structural modifications of their rapto-
rial appendages, mantis shrimps generate forceful predatory strikes
in a fraction of a second, which is so fast that it causes cavitation
in the water [1,2]. Venus flytraps snap their leaves together rapidly
to capture insects, which is enabled by the doubly curved geome-
try of the leaves [3]. Ladybird beetles fold their wings in a non-
rigid foldable origami pattern to store elastic energy when
stowed, which allows quick release of their wings when they
start flying [4]. Similarly, the earwig wings have incompatible
folding patterns, which remain open by a bistable locking
mechanism during flight and self-fold rapidly without muscular
actuation [5].
Such multi-stable structures, if adopted as building blocks of

architected materials, can lead to some interesting and unprece-
dented properties beyond conventional materials [6–9], such as
energy trapping [10,11], elastic pattern formation [12,13], and
guided transition waves [14]. In this work, we aim to design an
architected material that can switch properties by multi-stable snap-
ping [15–18], resembling the concept of phase transitions. Owing to
the different structures at the atomic and molecular scale, the same
material displays different properties in different phases. For natural

materials, the transitions between phases are characterized by
changes in thermodynamic states. The concept of a phase being a
rearranged structural form of materials can be generalized at
larger scales, which results in architected materials whose internal
structures can be intentionally changed to display different proper-
ties on demand.
As suggested by examples found in nature [3–5], origami pat-

terns can organize geometry of thin sheets and membranes to
produce functionality by harnessing their inherent elastic instabili-
ties [19–23]. There are a few known origami patterns that lead to
structures with multi-stability. Examples include the square twist
[24], the Kresling tube [25], and the hypar origami [26].
However, many of these patterns cannot be easily tessellated due
to irregular geometry (e.g., Kresling tube), or if they can be tessel-
lated, their deformation modes and multi-stable energy landscape
differ significantly between the unit cell and tessellation, making
their behavior difficult to predict (e.g., the square twist [24] and
hypar origami pattern [26]).
In this paper, we present a multi-stable origami pattern, named

the Shrimp pattern (see Fig. 2), whose geometry is tailored to
accommodate tessellations easily. The pattern is inspired by the seg-
mented structure of the shrimp, and hence named after it, as shown
in Fig. 1. The Shrimp pattern combines features of both rigid and
non-rigid origami, allowing the pattern to behave as a rigid
origami [27] in a range of stable configurations, while the switching
between different ranges of stable configurations has to go through
an energy barrier by snap-through (i.e., non-rigid origami) [28]. The
bistability of a unit cell of this pattern can be programed by a few
geometric parameters. Hence, if used for architected materials, the
Shrimp tessellated material would have multiple stable phases,
and switch between phases is possible through snap-through,
which is interpreted as mechanical phase transition. We further
show that the Shrimp tessellated material exhibits different
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mechanical properties in its different phases. Moreover, because
each Shrimp unit cell is bistable, by tessellating the Shrimp unit
cells, the number of phases of the resultant architected material
grows combinatorially.
The remainder of the article is organized as follows. Section 2

describes the geometry of the standard Shrimp pattern unit that tes-
sellates on a plane. Section 3 explains how the energy landscape of
a single Shrimp unit cell can be programed. Section 4 verifies the
programable bistable behavior by means of a reduced-order
bar-and-hinge numerical model. Section 5 elaborates on the creation
of the multi-stable architected material by tessellating the Shrimp
unit cells. More importantly, we demonstrate that the Shrimp tessel-
lated material can switch property by mechanical phase transition.
We summarize current work and propose future development in
Sec. 6. Appendix A explains the strategy to tessellate the Shrimp
pattern in curved configuration. Appendix B supplements the
paper by offering tips for fabricating the non-developable Shrimp
pattern.

2 Geometry of the Standard Shrimp Unit
The geometry of a standard Shrimp pattern unit is described in

Fig. 2. The length parameters include panel width a, front panel
length b, rear panel length c, and tail length d. The angular param-
eters include front panel angle αF, rear panel angle αR, and rib (tri-
angle) panel angle αB. For standard Shrimp pattern designs, edge
length c satisfies the following condition:

c =
a cos αF
cos αR

(1)

The edges of length a lie in the xz-plane, as shown in Fig. 2.

Although within each unit cell the tail panels are not connected to
the rib panels, in an assembly/tessellation of the Shrimp pattern,
the rib panels are actually between the tail panels and front
panels, and they should be attached to the last row of tail panels.
When ψ≤ 2αB, the Shrimp pattern allows rigid origami behavior

with a single degree-of-freedom (DOF). The configuration is deter-
mined by any of the three edge inclination angles (ψ/2) (=ψ2), ϕF,
and ϕR, which are related as follows:

cos (ψ/2) cosϕF = cos αF (2)

cos (ψ/2) cosϕR = cos αR (3)

We define the shaping angles of the Shrimp pattern by

ϕ = ϕF + ϕR (4)

ψ = ψ ′ = ψ ′′ (5)

Accordingly, the heights (H, H1, H2), width (W), and lengths (L, L1,
L2, L3) of the Shrimp unit cell are given by

H1 = b cosϕF = c cosϕR (6)

H2 = a cos (ψ/2) (7)

H = H1 + H2 (8)

W = 2a sin (ψ/2) (9)

LF = b sinϕF (10)

LR = c sinϕR (11)

LT = d (12)

L = LF + LR + LT (13)

To understand the folding of the Shrimp origami, it is also important
to calculate the dihedral folding angles labeled in Fig. 3. We can
derive that, when ψ≤ 2αB,

γFR = sin−1
sinϕF

sin αF

( )
+ sin−1

sinϕR

sin αR

( )
(14)

γFF = 2 sin−1
sin (ψ/2)
sin αF

( )
(15)

γRR = 2 sin−1
sin (ψ/2)
sin αR

( )
(16)

Fig. 1 Various stable states of amulti-stable Shrimp pattern tes-
sellation, which has a segmented structure similar to arthropods
such as shrimps. This curved design is a generalization from the
standard Shrimp pattern, whose geometry is elaborated upon in
Appendix A.

Fig. 3 Labels of geometric quantities of a shrimp unit cell: (a)
dihedral folding angles and (b) vertices

Fig. 2 Geometry of a shrimp unit cell: (a) isometric view, (b) and
(c) side views
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γRT =
π

2
+ sin−1

sinϕR

sin αR

( )
(17)

γTT = ψ ′ = ψ = ψ ′′ (18)

γFB = π − sin−1
sinϕF

sin αF

( )
− cos−1

tan (ψ/2)
tan αB

( )
(19)

γBB = 2 sin−1
sin (ψ/2)
sin αB

( )
(20)

Based on the above geometric relations, we can analytically
derive the Poisson’s ratio of the shrimp pattern, which is given by

νyx = −
dL/L

dW/W
= −

dL/dψ

dW/dψ

W

L

( )

=
tan2 (ψ/2)
L cos (ψ/2)

b cos2 αF�����������������������
cos2 (ψ/2) − cos2 αF

√
(

±
c cos2 αR����������������������

cos2 (ψ/2) − cos2 αR
√

)
(21)

The “±” sign in Eq. (21) depends on whether crease O6 O7 is a
mountain or valley fold. When O6 O7 is a mountain fold, the
Shrimp pattern is said to be in its eggbox mode (E), and the “+”
sign shall be used in Eq. (21). When O6 O7 is a valley fold, the
Shrimp pattern is said to be in its Miura mode (M ), and the “−”
sign shall be used. This feature is inherited from the Morph
pattern investigated in Ref. [29], as the Shrimp pattern shares the
same geometry with the Morph pattern by deleting the tail and rib
panels. Figure 4 shows how the geometric parameters (a) αF, (b)
αR, (c) d, and (d) b/a affect the Poisson’s ratio of a Shrimp unit.
We note that the in limit of d= 0, the value of νyx recovers that of
the Morph pattern [29]. The above derivation only applies to the

rigid origami range of the Shrimp pattern, when the folding
process is periodic across all unit cells. However, in reality, due
to the compliance of the panels, a true rigid origami behavior is
rarely observed [28].

3 Creating Bistability by Breaking Connectedness of
Configuration Space
According to Ref. [30], when different stable configurations of a

multi-stable origami are not connected by any continuous rigid
origami kinematic path, the origami is said to be topologically bis-
table, as its configuration space of rigid origami kinematics is dis-
connected. When there is no rib panel attached, the shaping
angles ϕ and ψ (=ψ′ =ψ′′) are related by the following formula:

cosψ = cos 2αF +
2( cos αR − cos αF cosϕ)2

sin2 ϕ
(22)

which is plotted in Fig. 5, in terms of ψ′ and ϕ.
However, owing to the existence of rib panels, ψ′ and ψ′′ cannot

exceed 2αB, and thus a certain range of folding is blocked under
rigid origami assumption, as indicated by the dashed lines in
Fig. 5. The solid parts of the curves refer to the remaining rigidly
foldable ranges of the Shrimp pattern, which is separated into two
disconnected parts. The two limit configurations of the blocked
range of rigid folding (dashed lines in Fig. 5) in terms of ϕ are
given by

ϕ = cos−1
cos αF
cos αB

( )
± cos−1

cos αR
cos αB

( )
(23)

We denote the difference between the two limit configurations as
Δϕ

Δϕ = 2 cos−1
cos αR
cos αB

( )
(24)

which becomes independent from αF.
In reality, the compliance of materials offers extra DOF that

allow the Shrimp pattern to transition between the two disconnected
rigid origami configurational ranges through non-rigid deformation.
The tail panels are added to allow the blocked range to be overcome
by gentle panel bending; otherwise, the blocked range of rigid
folding can only be overcome by stretching the materials, which is
likely to generate rupture or other types of irreversible damages.
Together, the addition of rib panels and tail panels leads to bistable
snapping between the two disconnected parts of the rigid origami
configurations of the Shrimp pattern. The conditions for the emer-
gence of bistability are discussed later.
As illustrated in Fig. 6(a), the folding energy of the system

increases as the pattern is folded away from the initial configuration,
but the bending energy only appears within the blocked range of
rigid folding, i.e., when ψ> 2αB. While the bending energy

Fig. 4 Poisson’s ratio (νyx) of shrimp unit cells with different
geometries at various folding states characterized by (ψ/2). We
examine the effect on Poisson’s ratio of four geometric parame-
ters. (a) The front panel angle αF, with a=20, b=25, d=10, β0=
45 deg, αR=53 deg. (b) The rear panel angle αR, with a=20, b=
25, d=10, β0=45 deg, αF=70 deg. (c) The relative tail length
d/a, with a=20, b=25, β0=45 deg, αF=70 deg, αR=53 deg.
(d) Front panel length to width ratio b/a. For each case, the
parameter values are given in the plots. Moreover, M denotes
the Miura mode and E denotes the eggbox mode.

Fig. 5 Configuration space of the Shrimp pattern in terms of ψ′
and ϕ. The dashed portion of the curves cannot be reached kine-
matically under the assumption of rigid origami.
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gradually vanishes beyond the range of non-rigid folding, the
folding energy keeps increasing. Therefore, if the stored energy
becomes smaller than the peak energy after the non-rigid deforma-
tion, the Shrimp pattern will experience bistability. We denote the
initial configuration as configuration 0, the peak energy state as con-
figuration 1, and the state after non-rigid folding as configuration 2,
i.e., the metastable state (see Fig. 6(b)).

3.1 Estimating Peak Energy During the Non-Rigid Folding
Range. Although the actual non-rigid deformation of the Shrimp
pattern during the transitioning is a complex combination of
bending, folding, and stretching, we may consider a simplified
deformation process to estimate the peak energy by assuming iso-
metric deformations. We assume that only the front and tail
panels will bend along one of their diagonals, as demonstrated in
Fig. 6(a). Therefore, ψ can be different from ψ′ and ψ′′ and can
exceed 2αB, as depicted in Fig. 6(b)〈0〉.
Due to symmetry about the middle plane, we can consider that

both front panels (or tail panels) experience the same amount of
bending. We denote the bending angle of the front panels as δF
and the bending angle of the tail panels as δT. We define ρ as the
rotation angle of edge O1 O2 (see Fig. 6(b)〈1〉), which can be
approximated by

ρ ≈ ψ/2 − αB (25)

when the bending of panels are small. At vertex O5, using spherical
trigonometry, we obtain

cos δF =
cos ρ − cos2 αFc
1 − cos2 αFc

(26)

where

cos αFc =
a2 − ab cos α1

a
���������������������
a2 + b2−2ab cos αF

√ (27)

For the tail panels, at vertex O8, we obtain

cos δT =
cos ρ − cos2 αTc
1 − cos2 αTc

(28)

where

cos αTc =
a��������

a2 + d2
√ (29)

We can see that ρ is largest when ψ= 2αR, and consequently, δF and
δT become maximal. Therefore, the total bending energy reaches
peak when ψ= 2αR, when the two rear panels become coplanar.
According to Eqs. (26) and (28), the maximal bending angles are
given by

δF,max = cos−1
cos (αR − αB) − cos2 αFc

1 − cos2 αFc

( )
(30)

Fig. 6 A hypothetical deformation process of a shrimp unit cell and the associated energy states
of the system. (a) The change of system energy (U) for a deformed Shrimp pattern, as a summa-
tion of bending (UsprB) and folding energy (UsprF), with respect to the deformation measured by
π − ϕ. Stretching deformation (and energy) are not considered by the isometric assumption.
(b) The idealized configurations of a shrimp unit cell during its deformation. Configuration 〈0〉:
the initial configuration. Configuration 〈1〉: the non-rigid deformed configuration during snap-
ping, when the bending energy in the system reaches maximum. Configuration 〈2〉: the after-
snapping configuration—we can see that the rear and tail panels are mirror symmetric with
respect to their initial configuration about the panel spanned by O2, O6, and O10.

091002-4 / Vol. 88, SEPTEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/88/9/091002/6697121/jam
_88_9_091002.pdf by C

alifornia Institute of Technology user on 19 August 2021



δT ,max = cos−1
cos (αR − αB) − cos2 αTc

1 − cos2 αTc

( )
(31)

Hence, we obtain the peak bending energy as

UsprB,1 = kB0 (δ
2
F,max + δ2T ,max) (32)

where kB0 denotes the linear bending stiffness. Assuming the initial
configuration of the Shrimp origami structure is stress-free, the
folding energy at ψ= 2αR is calculated as

UsprF,1 =
1
2
kF0 (γBB,1 − γBB,0)

2 + 2(γFB,1 − γFB,0)
2

(
+ (γFF,1 − γFF,0)

2 + 2(γFR,1 − γFR,0)
2

+ (γRR,1 − γRR,0)
2 + 2(γRT ,1 − γRT ,0)

2

+ (γTT,1 − γTT ,0)
2)

(33)

where the initial angles in Eq. (33) can be computed using Eqs.
(14)–(20) given ψ0 and ϕ0. The symbol kF0 denotes the linear
folding stiffness. The deformed angles at configuration 1 can be
estimated by taking ψ1= 2αR and ϕR,1= 0 using the same set of
equations. The total energy at peak is a combination of folding
and bending energy:

U1 = UsprB,1 + UsprF,1 (34)

Owing to the restricted kinematics, this estimated peak energy is
likely to be greater than the actual peak.

3.2 Estimating Stored Energy After Snapping. Configura-
tion 2 occurs when the rear panels are at symmetric positions

compared to the initial configuration (i.e., configuration 0), that is
when

ψ2 = ψ0 (35)

and

ϕ2 =
ϕF,0 − ϕR,0 if ϕ0 = ϕF,0 + ϕR,0
ϕF,0 + ϕR,0 if ϕ0 = ϕF,0 − ϕR,0

{
(36)

where

ϕF,0 = cos−1
cos αF

cos (ψ0/2)

( )

ϕR,0 = cos−1
cos αR

cos (ψ0/2)

( ) (37)

At this configuration, only the angles of γFR, γRR, and γRT experience
deformation, and the other folding hinges stay at the same angles as
in the initial configuration. The three dihedral angles can be derived
based on Eqs. (35) and (36), using Eqs. (14)–(20). Then we can
compute the stored energy at configuration 2 as

U2 = UsprF,2 =
kF0
2

2(γFR,2 − γFR,0)
2

[
+ (γRR,2 − γRR,0)

2 + 2(γRT ,2 − γRT ,0)
2] (38)

If it exists, the bistable state with locally minimal energy happens
before the assumed configuration 2, thus Eq. (38) overestimates the
minimal energy after the non-rigid folding. However, because
Eq. (34) also overestimates the peak energy, when we use ΔU=
U1−U2 to determine the existence of a metastable state, the error
shall be reduced.

Fig. 7 Programable energy state of a shrimp unit cell. A positive energy difference ΔU indicates
that the pattern is bistable. (a)–(c) Show how ΔU is affected by geometric parameters (i.e., αF, αR,
a, d) and material properties (i.e., kB

0 /k
F
0). In (d), we plot the limit surface of the emergence of bist-

ability in the configuration space spanned by αR, d, k
B
0 /k

F
0.
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3.3 Determining Existence of Metastable State. As illus-
trated in Fig. 6, if ΔU=U1−U2 > 0, a local minimum of stored
energy exists besides the initial configuration (i.e., the metastable
state), and thus the Shrimp pattern exhibits bistability. This
energy difference is affected by the geometry of the pattern and
material properties. Since we assume isometric deformations,
according to Eqs. (34) and (38), the material-associated parameter
that influences the value of ΔU is kB0 /k

F
0 , the ratio between

bending stiffness and folding stiffness.

Figures 7(a) and 7(b) show the variation of ΔU with respect to
the pairs of geometric parameters (αF, αR), and (a, d ). We
observe that αR and a have positive influence on ΔU, while d has
negative influence. We also find that αF does not have significant
influence on ΔU. The effect of kB0 /k

F
0 is plotted in Fig. 7(c) in

pair with αR. The emergence of the bistability is defined by the
contour of ΔU= 0, which is plotted in Fig. 7(d ) as a function of
αR, d, and kB0 /k

F
0 . When kB0 /k

F
0 is larger, the Shrimp pattern exhibits

bistability over a wider range of geometries.

Fig. 8 Numerical verification of the programable energy landscape of shrimp unit cell. (a)
Boundary conditions for the numerical simulation. Dashed arrows are fixed DOF, and the
solid arrow refers to applied displacement u. (b) Force versus (normalized) displacement
curve. The displacement u is normalized by LR of each design. The behavior of a shrimp unit
cell as αR varies from 45 deg to 55 deg. (c) The stored energy versus (normalized) displacement.
(d) Comparison between the analytical estimation of ΔU as formulated in Sec. 3 with the numer-
ically obtained values. When the structure is monostable, ΔU is taken as the difference between
the stored energy at u/LR=1 and u/LR=2 for the numerical models. (e) The opening of angle ψ′
during deformation. We see that ψ′ is always smaller than 2αB (=90 deg).
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4 Verifying Bistable Behavior by Numerical
Simulations
To verify the analytical analysis about the bistable behavior of the

Shrimp pattern unit cell, we conduct numerical simulations using
the bar-and-hinge model. The implementation in this work is
based on the N5B8 discretization scheme [31]. The basic idea of
the N5B8 discretization is explained in Refs. [31,32]. We assume
that Young’s modulus E= 1GPa, Poisson’s ratio ν= 0.3, and
sheet thickness t= 0.5mm. The stiffness of folding hinges are
assigned through scalable formulas as in Ref. [31]. We take the
length scale factor L* to be 30LF, relative to the length of each
folding hinge, which yields an average ratio between bending and
folding stiffness per length kB0 /k

F
0 ≈ 80.

The results from numerical simulations of compressive folding
are presented in Fig. 8. The boundary conditions for the numerical
analysis are shown in Fig. 8(a). In this study, we fix some geometric
parameters as αF = 70 deg, d= 10mm, a= 20mm, and b= 25mm.
When αR > 49 deg, the bistable behavior starts to appear. The dis-
placement u measures the movement of node O8 in the direction of
loading (i.e., −y). We normalize the displacement u by L2, such that
(1) when u/L2= 1, the rear panels are approximately coplanar, close
to configuration 1 in the analytical derivation and (2) when u/L2= 2,
the rear panels snap inside the front panels, close to configuration 2
in the analytical derivation.
The negative forces in Fig. 8(b) during the bistable snapping

display a long (negative) plateau without a strong peak, which
behaves quite differently from most bistable origami structures,
including the hypar origami [26]. The lack of strong negative
peak force indicates that the snapping of the Shrimp pattern is a
gentle process. We observe a stiffening effect occurring immedi-
ately after the snapping, as indicated by the sharp increase of
forces when u/L2 > 2 in Fig. 8(b). As expected in the analytical anal-
ysis, if bistability appears, the stored energy of the Shrimp pattern
experiences a peak near u/L2= 1 and a local minimum around u/
L2= 2 (see Fig. 8(c)). As shown in Fig. 8(d ), the analytical estima-
tions of the energy difference ΔU agree well the numerically com-
puted energy barriers. We record the angles of ψ′ during the
simulations, as shown in Fig. 8(e). Compared with Fig. 5, we can
clearly see that ψ′ is kinematically constrained to be below 2αB
(= 90 deg).
The numerical simulations verify that the energy landscape of the

Shrimp pattern is programable, through geometric variations of the
rear panel angle αR. As αR increases, both the peak force and mag-
nitude of energy barrier (i.e., ΔU) increase accordingly. Such
monotonic relationship allows for easy interpretation and manipula-
tion of the mechanical properties of the Shrimp pattern.

5 Metastable Phases and Phase Transition of the
Shrimp Tessellated Material
The programable bistability of the Shrimp pattern unit cell allows

us to create architected materials with metastable phases by tessel-
lating the shrimp unit cells. The compatibility condition for tessel-
lation is that: in the x-direction, angle ψ′ of one unit must match ψ′′
of the next unit; and in the y-direction, angle ϕ, and tail length d of
adjacent units must be equal. Figure 9(a) shows an example of such
designs when we tessellate three shrimp units in the x-direction to
form a chain.
The state of least energy (when U= 0) of the Shrimp tessellation

occurs when all three units are in their eggbox mode. Denote ψ0 as
angle ψ at the state of least energy. We consider three variants of
this tessellation: (1) ψ0 = 66 deg, αR = 53 deg; (2) ψ0 = 86 deg,
αR = 53 deg; and (3) ψ0 = 86 deg, αR,AB = 55 deg, αR,BC = 53 deg,
and αR,CD = 51 deg; while we fix αF = 70 deg, αB = 45 deg, a= 20
mm, b= 25mm, and d= 10mm for all three variants. To analyze
the behavior of this chain of Shrimp units, we consider each unit
as a nonlinear one-dimensional spring, as shown in the left half
of Fig. 9(a). This is referred to as the chain model in Fig. 9.

Owing to the additional kinematic constraints implicitly induced
by neighbor units in the tessellation, we update the boundary con-
ditions used in Sec. 4 by removing the support on vertex O6 as it
seems to be over restrictive. The compatibility between adjacent
units is enforced by requiring that the angular difference between
ψ′ of one unit and ψ′′ of the next unit to be less than 0.01π. This
chain tessellation has one zero energy phase and seven metastable
phases. We consider a scenario when the whole chain is compressed
by an amount of uA= 2 LR,AB. Qualitatively, we expect that there are
three possible metastable phases, encoded by (E,E,M), (E,M,E), and
(M,E,E), as illustrated in the right part of Fig. 9(a). The three major
DOFs of the system are given by uA, uB, and uC, as shown in
Fig. 9(a). Based on the displacement–energy relationship revealed
by numerical analysis of each individual unit, we can draw the

Fig. 9 Energy landscape of a 1× 3 tessellation of Shrimp units
when subject to a compression displacement load of uA=2 LR,
AB at its end. The gray area are incompatible configurations
judged by the condition that the angular difference between ψ′
of one unit and ψ′′ of the next unit to be less than 0.01π. (a) Illus-
tration of the chain model and the full model. Sketches of the
three metastable phases are shown on the right. (b) The energy
landscape of variant (1) presented in contour plot. The plot on
the right shows a comparison between the chain model predic-
tion and the full model simulation along the same kinematic
path for transitioning from one metastable phase to another,
which is indicated by the solid line with arrow in the energy
contour plot. (c) The energy contour plot and comparison
between the chain model and the full model for variant (2). (d)
The energy contour plot and comparison between the chain
model and the full model for variant (3).
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complete energy landscape of the tessellation to reveal its three
metastable states, as shown in Figs. 9(b)–9(d ) for the three different
variants of the chain tessellation. We can see that when the three
units are the same, as of variants (1) and (2), the energy landscape
is symmetric. However, when the three units are different in geom-
etry, the energy landscape becomes asymmetric, and the energy
state associated with unit CD in its Miura mode has a higher
energy compared to the other two metastable states. This is
because unit CD has a smaller αR, as well as LR, and hence at uA
= 2 LR,AB, the whole chain needs to be further compressed
beyond unit CD’s metastable state, which causes the system to
store extra elastic energy.
To verify the predictions made by the simplified chain model, we

perform simulation on a full model considering all three units. We
make sure that in the full model, each unit is subject to equivalent
boundary conditions as in the single unit simulation. We first find
the local equilibrium of the chain tessellation when unit AB is at
its Miura mode. We compute an initial rigid origami configuration
as unit AB in its Miura mode (configuration 2) and units BC and CD
in their eggbox modes (configuration 2), which is approximately the
geometry of the metastable state (E,E,M). However, the zero energy
states of the folding angles are set to be the same as all three units in
their eggbox mode. This leads to some unbalanced forces in the
chain, which is then intermediately resolved at the first increment
of the nonlinear structural analysis as the algorithm seeks for equi-
librium at the end of each increment [28]. Next, a displacement load
uB is applied while uA is fixed to transition the tessellation from
metastable state (E,E,M) to (E,M,E). This simulation results in a
path on the energy landscape from one local minimum to another,
which is then compared with the chain model predictions, as
shown on the right sides of Figs. 9(b)–9(d ). We find that the
chain model is quite accurate, especially near the metastable

states. Deviating from the stable states, the chain model appears
to be stiffer than the full mode, because its DOFs are much less
than the full model.
In each of the different phases, the Shrimp tessellated material

displays different mechanical properties. Figure 10 shows how
Poisson’s effect behaves differently for the variant (1) at different
phases. Moreover, as the three units are the same, some phases
behave the same way. Therefore, we can only find four distinct
branches on Poisson’s ratio diagram. However, variant (3) has
three different units, and hence its eight phases all behave differ-
ently, as shown in Fig. 10(b). Such a feature allows us to reprogram
the material after it is manufactured, through mechanical phase tran-
sitions (i.e., snap-through), as illustrated in Fig. 11.

6 Concluding Remarks
The Shrimp origami pattern enables architected metamaterials

with programable metastable phases through mechanical phase
transitions. The Shrimp pattern unit is created by modifying the
geometry of a rigid foldable pattern to block a range of rigid
folding kinematics, which can only be overcome by non-rigid
origami deformation. The non-rigid deformation separates the
rigid folding kinematics of a Shrimp pattern into two disconnected
ranges. Thus, the programable Shrimp pattern can display both rigid
origami and non-rigid origami behavior. We study the connection
between the geometry of a shrimp unit cell and its bistable behavior.
An analytical estimation function is derived to approximate the
energy barrier between the two stable states of a shrimp unit cell.
The bistable Shrimp unit can be tessellated to form architected
metamaterials. We show an example of the Shrimp tessellated mate-
rials with multiple stable configurations, which are interpreted as
metastable phases. To transition from one phase to another, the tes-
sellation must overcome an energy barrier through mechanical
snapping. In each of the different phases, the metamaterial displays
different mechanical properties, characterized here by Poisson’s
ratio (yet other properties can also be explored). In Appendix B,
we discuss approaches to fabricate such non-developable patterns.
Future investigation includes conducting experiments on the

Shrimp pattern to investigate the performance of samples provided
by different manufacturing techniques. In addition, the 3D stacking
of the Shrimp pattern should be explored towards applications as
smart multi-phase cellular materials.
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Appendix A: Generalization of the Shrimp Pattern
Varying the geometry of the Shrimp pattern unit cell allows it to

tessellate curved chains, such as the shrimp shape shown in Fig. 1.
This is done by creating angular deficit on each of the shrimp units
in an assemblage. Here, we illustrate the strategy by looking at the
flat folded states of the Shrimp patten, as shown in Fig. 12.
In the flat folded state of a standard Shrimp pattern unit cell

(eggbox mode), the points O5 and O8 lie on a line parallel to the
line passing through O1 and O4. These two parallel lines can be
regarded as concentric circles of infinite radius (Fig. 12(a)).
When we generalize the radii of the two concentric circles from infi-
nite to finite values, we can construct a Shrimp unit cell that leads to
a curved tessellation. As shown in Fig. 12(b), in the generalized
Shrimp pattern unit cell, the lines of O1 O5, O4 O8 are perpendicular
to the circles passing through O1 O4 and O5 O8, instead of the
straight lines in the standard version. Now both lines of O1 O5,

O4 O8 are pointing to the shared center of the two circles. We let
the extended line of O2 O6 to pass through the center, and let this
line to bisect the angle formed by lines of O1 O5 and O4 O8. As
in the standard version, O1 O2 is parallel to O5 O6, while the
panel angle αF is still a free design parameter. Following this
design protocol, the front panel O1 O2 O6 O5 becomes an obtuse

Fig. 12 Geometry of a generalized shrimp unit cell for curved
tessellation. (a) From top to bottom: the flat folded state of a stan-
dard Shrimp pattern unit cell in eggbox mode; the flat folded
state of a 1D tessellation (eggbox mode); and the flat folded
state of the 1D tessellation (Miura mode); (b) from top to
bottom: the flat folded state of a generalized Shrimp pattern
unit cell in eggbox mode; the flat folded state of a 1D tessellation
(eggbox mode); and the flat folded state of the 1D tessellation
(Miura mode).

Fig. 13 The double layer technique. We fabricate developable stripes and glue them in
twodirections tomake thenon-developableShrimppattern.Wedemonstrate the fabrica-
tion of a single unit cell in this figure. The correspondence of panels are shown in (a) and
(b), fromdifferenceviewangles.Thedesignsofdevelopablestripesareshownin (c). (d)A
4× 4 patch of Shrimp patternmade using the double layer technique. The sheet material
we used is the 63lb premium ICE paper (Durilla Durable Papers, CTI Paper USA, WI).
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trapezoid instead of a parallelogram. We also keep the rectangle
shape of the tail panel O3 O4 O8 O7. As a result, the rear panel
O2 O3 O7 O6 becomes a general quadrilateral. The generalized
Shrimp pattern unit cell forms an angular deficit θ, such that a 1D
tessellation leads to a curvature of θ/L, where L= ‖O1 O4‖. When
all unit cells in a tessellation are folded flat into the Miura mode,
the curvature disappears and the tessellation becomes straight, as
shown in Fig. 12(b). The Miura mode flat folded state can be
obtained from the eggbox mode by two reflections about O2 O6

and O3 O7.

Appendix B: Fabrication of the Shrimp Pattern
The Shrimp pattern contains non-developable vertices, thus it

cannot be folded from a single piece of flat sheet, like the Miura-ori.
We fabricate the Shrimp pattern by gluing thin sheets or 3D
printing.
We adopt a double layer technique to glue stripes of thin sheets,

which is demonstrated in Fig. 13. The advantage of this strategy is
that we obtain uniform thickness over the panels (double layers) and
creases (single layer). The creases are treated by perforation or
etching to reduce its folding stiffness. As we can observe from
Fig. 7, to enable bistability, the Shrimp pattern needs to have a
large kB0 /k

F
0 ratio. By making the panels thicker, the double layer

technique further increases the ratio of kB0 /k
F
0 .

Additive manufacturing technologies provide another avenue to
realize the Shrimp pattern design. An automatic algorithm is
written in Rhino/Grasshopper to generate a printable solid given
an origami design. The printable solid is thicker within panels
and thinner along folding hinges in order to differentiate their stiff-
ness. The thin hinges and thick panels can also be printed with dif-
ferent materials. The procedure is outlined in Fig. 14.
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Fig. 14 Shrimp pattern by 3D printing. (a) Procedure to prepare
3D printable solid from geometric data of a Shrimp origami
surface. (b) A 3D printed Shrimp pattern using the selective
laser sintering (SLS) technology. The sample shown in (b) is
printed by SLS technology using a rubbery TPU material.
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